Oxidative Chemical Oxygenation of $\mathbf{N F}_{3}$ and Novel Synthesis of $\mathrm{NF}_{3} \mathrm{O}$

Karl O. Christe

Hughes STX, Edwards Air Force Base, California 93524 Loker Institute, University of Southern California Los Angeles, California 90089

Received February 17, 1995
Nitrogen trifluoride oxide, $\mathrm{NF}_{3} \mathrm{O}$, is a fascinating molecule ${ }^{1-8}$ which is isoelectronic with $\mathrm{NF}_{4}{ }^{+}$. Its $\mathrm{N}-\mathrm{O}$ bond possesses a high degree of double-bond character ($r_{\mathrm{N}-\mathrm{O}}=1.159 \AA$), ${ }^{1}$ and therefore, it is not a typical amine oxide with a long, semipolar $\mathrm{N}-\mathrm{O}$ bond and a negative charge on the oxygen atom. To avoid exceeding eight valence electrons on nitrogen and to satisfy the high electronegativity of fluorine, the $\mathrm{NF}_{3} \mathrm{O}$ molecule is best described as an $\mathrm{NF}_{2} \mathrm{O}^{+} \mathrm{F}^{-}$type structure in which the negative charge is evenly distributed over all three fluorine ligands. This description is supported by the unusally long $(1.432 \AA)^{1}$ and polar $\mathrm{N}-\mathrm{F}$ bonds observed for $\mathrm{NF}_{3} \mathrm{O}$.

Since $\mathrm{NF}_{3} \mathrm{O}$ possess a $\mathrm{N}(+\mathrm{V})$ central atom, its synthesis is difficult and has been achieved either by the fluorination of an NO-containing molecule, such as FNO, or by oxygenation of NF_{3}. The oxidative fluorination of FNO has been accomplished using the powerful fluorinating agents $\mathrm{IrF}_{6},{ }^{9}$ elemental fluorine at temperatures in excess of $260^{\circ} \mathrm{C},{ }^{10}$ or $\mathrm{N}_{2} \mathrm{~F}^{+}$or XeF^{+}salts. ${ }^{11}$ The oxygenation of NF_{3} is much more difficult and has been achieved only by the use of O atoms which were generated by electric glow discharge at low temperatures. ${ }^{12,13}$ No evidence could be found in the literature for a purely chemical oxygenation of NF_{3} to $\mathrm{NF}_{3} \mathrm{O}$. In a recent paper, ${ }^{14}$ Cacace and coworkers have reported the formation of gaseous $\mathrm{NF}_{2} \mathrm{O}^{+}$ions from the chemical ionization of $\mathrm{NF}_{3} / \mathrm{N}_{2} \mathrm{O}$ mixtures in a mass spectrometer. On the basis of their observations, they suggested eq 1 , where X_{5} represents a strong Lewis acid, as an alternate route to salts containing the $\mathrm{NF}_{2} \mathrm{O}^{+}$cation. Whereas the

$$
\begin{equation*}
\mathrm{NF}_{3}+\mathrm{XF}_{5}+\mathrm{O} \text {-donor } \rightarrow \mathrm{NF}_{2} \mathrm{O}^{+} \mathrm{XF}_{6}^{-}+\text {donor } \tag{1}
\end{equation*}
$$

formation of free gaseous $\mathrm{NF}_{2}{ }^{+}$cations in a mass spectrometer is facile, their formation in bulk on a preparative scale presents a major problem. Thus, previous studies from other ${ }^{15}$ and our ${ }^{16}$ laboratories had shown that, even at low temperatures, NF_{3} does not form stable adducts with the strong Lewis acids $\mathrm{SbF}_{5}, \mathrm{AsF}_{5}$,

[^0]or BF_{3}. In spite of these dire prospects, the possibility of chemically oxygenating NF_{3} was explored.

Attempts were unsuccessful to prepare the known ${ }^{17,18}$ $\mathrm{NF}_{2} \mathrm{O}^{+} \mathrm{AsF}_{6}^{-}$salt from $\mathrm{NF}_{3}, \mathrm{~N}_{2} \mathrm{O}$, and AsF_{5} in a Monel cylinder at autogeneous pressures of about 80 atm at temperatures ranging from 100 to $190^{\circ} \mathrm{C}$ using a 7 -fold excess of NF_{3} and $\mathrm{N}_{2} \mathrm{O}$ and reaction times of about 3 days. Only unreacted starting materials were recovered from these experiments. When AsF_{5} was replaced by SbF_{5}, no reaction was observed at $100^{\circ} \mathrm{C}$. When, however, the reaction temperature was raised to $150^{\circ} \mathrm{C}$, a quantitative formation of $\mathrm{NF}_{2} \mathrm{O}^{+} \mathrm{Sb}_{2} \mathrm{~F}_{11}{ }^{-17.19}$ was obtained with the excess NF_{3} and $\mathrm{N}_{2} \mathrm{O}$ being recovered unchanged. Raising the reaction tempreature to $190{ }^{\circ} \mathrm{C}$ resulted in the formation of a mixture of $\mathrm{NF}_{2} \mathrm{O}^{+} \mathrm{SbF}_{6}^{-}$and $\mathrm{NF}_{2} \mathrm{O}^{+} \mathrm{Sb}_{2} \mathrm{~F}_{11}{ }^{-}$ which contained small amounts of NO^{+20} and $\mathrm{NF}_{4}{ }^{+21-24}$ salts as byproducts. When the reaction was carried out at $260^{\circ} \mathrm{C}$, $\mathrm{NO}^{+} \mathrm{SbF}_{6}{ }^{-}$and $\mathrm{NF}_{4}{ }^{+} \mathrm{SbF}_{6}{ }^{-}$became the main products, and the excess NF_{3} and $\mathrm{N}_{2} \mathrm{O}$ were again recovered unchanged.
The observed products can be readily explained by the scheme depicted in eq 2. The tendency of $\mathrm{NF}_{3} \mathrm{O}$ and SbF_{5} to form a salt containing the $\mathrm{Sb}_{2} \mathrm{~F}_{11}$ - polyanion at $150^{\circ} \mathrm{C}$ is in accord with a previous report. ${ }^{17}$ With increasing temperature, the formation of $\mathrm{NF}_{2} \mathrm{O}^{+} \mathrm{SbF}_{6}{ }^{-}$is favored, followed by its dissociation to $\mathrm{NF}_{3} \mathrm{O}$ and SbF_{5}. This is analogous to our previous observations for $\mathrm{NF}_{4}{ }^{+} \mathrm{Sb}_{2} \mathrm{~F}_{11}{ }^{-}$. ${ }^{25}$ At temperatures above 250

${ }^{\circ} \mathrm{C}, \mathrm{NF}_{3} \mathrm{O}$ is well-known ${ }^{10}$ to form an equilibrium with FNO and F_{2} which, in the presence of SbF_{5}, is continuously shifted to the FNO and F_{2} side by the formation of the stable $\mathrm{NOSbF}_{6}{ }^{26}$ and $\mathrm{NF}_{4} \mathrm{SbF}_{6}{ }^{25}$ salts.
The mechanism of the first step of eq 2 is not as clear-cut. On the basis of the ion-molecule experiment of Cacace ${ }^{14}$ and the requirement for SbF_{5} in this reaction, it would seem logical to postulate $\mathrm{NF}_{2}{ }^{+} \mathrm{SbF}_{6}{ }^{-}$as an intermediate in the formation of $\mathrm{NF}_{2} \mathrm{O}^{+}$. Since previous studies ${ }^{15.16}$ had shown no evidence for NF_{3} forming an adduct with either $\mathrm{BF}_{3}, \mathrm{AsF}_{5}$, or SbF_{5}, further

$$
\text { (17) Christe, K. O.; Maya, W. Inorg. Chem. 1969, 8, } 1253 .
$$

(18) Wamser, C. A.; Fox, W. B.; Sukornik, B.; Holmes, J. R.; Stewart, B. B.; Juurik, R.; Vanderkooi. N.; Gould, D. Inorg. Chem. 1969, 8, 1249.
(19) The $\mathrm{NF}_{2} \mathrm{O}^{+} \mathrm{Sb}_{2} \mathrm{~F}_{11}$ salt was identified by its infrared and Raman spectra (ref 17). Single crystals were grown from anhydrous HF solution. Attempts by Prof. R. Bau to solve the crystal structure were unsuccessful due to the poor quality of the crystals.
(20) Geichman, J. R.; Smith, E. A.; Trond, S. S.; Ogle, P. R. Inorg. Chem. 1962, 1, 661.
(21) Christe, K. O.; Guertin, J. P.; Pavlath, A. E. Inorg. Nucl. Chem. Lett. 1966, 2, 83.
(22) Guertin, J. P.; Christe, K. O.; Pavlath, A. E. Inorg. Chem. 1966, 5, 1921.
(23) Christe, K. O.; Guertin, J. P.; Pavlath, A. E.; Sawodny, W. Inorg. Chem. 1967, 6, 533.
(24) Tolberg, W. E.; Rewick, R. T.; Stringham, R. S.; Hill, M. E. Inorg. Chem. 1967, 6, 1156.
(25) Christe, K. O.; Wilson, R. D.; Schack, C. J. Inorg. Chem. 1977, 16,937.
(26) Griffith, J. E.; Sunder, W. A.; Falconer, W. E. Spectrochim. Acta, Part A 1975, 31A, 1207.
experiments were carried out on the $\mathrm{SbF}_{5}-\mathrm{NF}_{3}, \mathrm{SbF}_{5}-\mathrm{N}_{2} \mathrm{O}$, and $\mathrm{SbF}_{5}-\mathrm{NF}_{3}-\mathrm{N}_{2} \mathrm{O}$ systems. Liquid SbF_{5} was pressurized with 2 atm of either NF_{3}. $\mathrm{N}_{2} \mathrm{O}$, or an equimolar mixture of NF_{3} and $\mathrm{N}_{2} \mathrm{O}$, and its Raman spectra were recorded. The spectra of the liquid phase showed no detectable frequency shifts for the SbF_{5} bands. In addition, weak signals were observed for NF_{3} and $\mathrm{N}_{2} \mathrm{O}$ dissolved in the liquid SbF_{5}. The frequencies of these dissolved species were identical to those reported ${ }^{27}$ for the free molecules in the gas phase; hence, liquid SbF_{5} does not interact with either NF_{3} or $\mathrm{N}_{2} \mathrm{O}$ at room temperature.

Since NF_{3} and $\mathrm{N}_{2} \mathrm{O}$ do not react with each other in the absence of SbF_{5} at temperatures as high as $260^{\circ} \mathrm{C}$, as shown by the recovery of the unreacted excess NF_{3} and $\mathrm{N}_{2} \mathrm{O}$ in our reactions, one might argue that at $150^{\circ} \mathrm{C} \mathrm{NF}_{3}$ and $\mathrm{N}_{2} \mathrm{O}$ are in equilibrium with $\mathrm{NF}_{3} \mathrm{O}$ and N_{2} and that this equilibrium (3), which in the absence of SbF_{5} must lie far to the left, is continuously shifted to the right by trapping of the $\mathrm{NF}_{3} \mathrm{O}$ as solid $\mathrm{NF}_{2} \mathrm{O}^{+} \mathrm{SbF}_{6}{ }^{-}$.

$$
\begin{equation*}
\mathrm{NF}_{3}+\mathrm{N}_{2} \mathrm{O} \rightleftarrows \mathrm{NF}_{3} \mathrm{O}+\mathrm{N}_{2} \xrightarrow{+\mathrm{SbF}_{5}} \mathrm{NF}_{2} \mathrm{O}^{+} \mathrm{SbF}_{6}^{-} \tag{3}
\end{equation*}
$$

Thermodynamically, eq 3 is feasible because the $\mathrm{NF}_{3}+\mathrm{N}_{2} \mathrm{O}$ reaction is calculated ${ }^{28}$ to be exothermic by about $27 \mathrm{kcal} \mathrm{mol}^{-1}$, and the lattice energy of solid $\mathrm{NF}_{2} \mathrm{O}^{+} \mathrm{SbF}_{6}^{-}$should provide an additional driving force. If these assumptions were correct and equilibrium 3 does indeed exist and at $150-250^{\circ} \mathrm{C}$ is shifted far to the left, $\mathrm{NF}_{3} \mathrm{O}$ should react with N_{2} at these temperatures to produce NF_{3} and $\mathrm{N}_{2} \mathrm{O}$ in high yield. This, however, is not the case, and a more plausible mechanism is required for explaining the role of SbF_{5} in the first step of eq 2.
A more appealing, although unprecedented, explanation is that at room temperature SbF_{5} does not interact with NF_{3} but at $150{ }^{\circ} \mathrm{C}$ it does. This might be possible because at room temperature liquid SbF_{5} is highly polymeric and self-associated through fluorine bridges, while above its boiling point $\left(141^{\circ} \mathrm{C}\right)$ in the gas phase it is largely depolymerized. Thus, SbF_{5} might be able to interact in the gas phase with NF_{3} and polarize it

[^1]sufficiently to allow its attack by $\mathrm{N}_{2} \mathrm{O}$ with the resulting ternary intermediate then undergoing an exothermic intramolecular N_{2} elimination reaction with simultaneous formation of solid $\mathrm{NF}_{2} \mathrm{O}^{+} \mathrm{SbF}_{5}{ }^{-}$eq 4.

The concept of a Lewis acid-Lewis base pair interacting in the gas phase but not in the condensed liquid phase is highly unusual and will be the subject of a forthcoming ${ }^{18} \mathrm{~F}$ radio tracer study.
In order to provide a convenient synthesis for free $\mathrm{NF}_{3} \mathrm{O}$, it was necessary to convert the $\mathrm{NF}_{2} \mathrm{O}^{+} \mathrm{Sb}_{2} \mathrm{~F}_{11}{ }^{-}$salt in an efficient manner to pure $\mathrm{NF}_{3} \mathrm{O}$. This was achieved by vacuum pyrolysis of $\mathrm{NF}_{2} \mathrm{O}^{+} \mathrm{Sb}_{2} \mathrm{~F}_{11}{ }^{-}$at $190-230^{\circ} \mathrm{C}$ in the presence of excess NaF eq 5 . This process affords pure $\mathrm{NF}_{3} \mathrm{O}$ in high yield.

$$
\begin{equation*}
\mathrm{NF}_{2} \mathrm{O}^{+} \mathrm{Sb}_{2} \mathrm{~F}_{11}^{-}+2 \mathrm{NaF} \rightarrow 2 \mathrm{Na}^{+} \mathrm{SbF}_{6}^{-}+\mathrm{NF}_{3} \mathrm{O} \tag{5}
\end{equation*}
$$

In summary, it has been demonstrated that $\mathrm{N}_{2} \mathrm{O}$, in spite of its high kinetic stability and concomitant unreactivity, ${ }^{29}$ can act as a powerful, oxidative oxygenating agent. Using $\mathrm{N}_{2} \mathrm{O}$ as the oxygenating agent, the first purely chemical oxygenation of NF_{3} to $\mathrm{NF}_{3} \mathrm{O}$ has been achieved. This reaction affords a new, simple, high-yield synthesis of $\mathrm{NF}_{3} \mathrm{O}$ from commercially available starting materials.

Acknowledgment. The author thanks Prof. R. Bau for his numerous attempts to obtain the crystal structure of $\mathrm{NF}_{2} \mathrm{O}^{+} \mathrm{Sb}_{2} \mathrm{~F}_{11}{ }^{-}$and Dr. W. W. Wilson for helpful discussions. This work was financially supported by the U.S. Air Force Phillips Laboratory and the U.S. Army Research Office.
JA9505614
(29) Greenwood, N. N.; Earnshaw, A. Chemistry of the Elements; Pergamon Press: Oxford, U.K., 1986.

[^0]: (1) Plato, V.; Hartford, W. D.; Hedberg, K. J. Chem. Phys. 1970, 53, 3488.
 (2) Curtis, E. C.; Pilipovich, D.; Moberly, W. H. J. Chem. Phys. 1967, 46, 2904.
 (3) Kirchhoff, W. H.; Lide, D. R., Jr. J. Chem. Phys. 1969, 51, 467.
 (4) Abramowitz, S.; Levin, I. R. J. Chem. Phys. 1969, 51, 463.
 (5) Hirschmann, R. P.; Harnish, D. F.; Holmes, J. R.; MacKenzie, J. S.; Fox, W. B. Appl. Spectrosc. 1969, 23, 333.
 (6) Frost, D. C.; Herring, F. G.: Mitchell, K. A. R.; Stenhouse, I. R. J. Am. Chem. Soc. 1971, 93, 1596.
 (7) Grein, F.; Lawlor, L. J. Theor. Chim. Acta 1983, 63, 161.
 (8) Brumm, M.; Frenking, G.; Breidung, J.; Thiel, W. Chem. Phys. Lett. 1992, 197, 330.
 (9) Bartlett, N.; Passmore, J.: Wells, E. J. J. Chem. Soc., Chem. Commun. 1966, 213.
 (10) Bougon, R.; Chatelet, J.; Desmoulin, J. P.; Plurien, P. C. R. Seances Acad. Sci., Ser. C 1968, 266, 1760.
 (11) Minkwitz, R.; Bernstein, D.; Preut, H.; Sartori, P. Inorg. Chem. 1991, 30, 2157.
 (12) Maya, W. U.S. Patent $3,320,147,1967$.
 (13) Fox, W. B.; MacKenzie, J. S. U.S. Patent 3,323,866, 1967. Fox, W. B.; MacKenzie, J. S.; Vanderkooi, N.; Sukornick, B.; Wamser, C. A.; Holmes, J. R.; Eibeck, R. E.; Stewart, B. B. J. Am. Chem. Soc. 1966, 88 , 2684.
 (14) Cacace, F.; Pepi, F.; Grandinetti, F. J. Phys. Chem. 1994, 98, 8009.
 (15) Craig, A. D. Inorg. Chem. 1964, $3,1628$.
 (16) Christe, K. O.; Wilson, R. D.; Goldberg, I. B. Inorg. Chem. 1979, 18, 2572.

[^1]: (27) Shimanouchi, T. Natl. Stand. Ref. Data Ser. (U.S., Natl. Bur. Stand.) 1972, 39, 1.
 (28) Chase, M. W., Jr.; Davies, C. A.; Downey, J. R., Jr.; Frurip, D. J.; McDonald, R. A.; Syverud, A. N. JANAF Thermochem. Tables, Third Edition, J. Phys. Chem. Ref. Data 1985, 14, Suppl. 1.

