Oxidative Chemical Oxygenation of NF₃ and Novel Synthesis of NF₃O

Karl O. Christe

Hughes STX, Edwards Air Force Base, California 93524 Loker Institute, University of Southern California Los Angeles, California 90089

Received February 17, 1995

Nitrogen trifluoride oxide, NF₃O, is a fascinating molecule¹⁻⁸ which is isoelectronic with NF_4^+ . Its N-O bond possesses a high degree of double-bond character $(r_{N-0} = 1.159 \text{ Å})^{1}$ and therefore, it is not a typical amine oxide with a long, semipolar N-O bond and a negative charge on the oxygen atom. To avoid exceeding eight valence electrons on nitrogen and to satisfy the high electronegativity of fluorine, the NF₃O molecule is best described as an NF₂O⁺F⁻ type structure in which the negative charge is evenly distributed over all three fluorine ligands. This description is supported by the unusally long (1.432 Å)1 and polar N-F bonds observed for NF₃O.

Since NF₃O possess a N(+V) central atom, its synthesis is difficult and has been achieved either by the fluorination of an NO-containing molecule, such as FNO, or by oxygenation of NF₃. The oxidative fluorination of FNO has been accomplished using the powerful fluorinating agents IrF₆,9 elemental fluorine at temperatures in excess of 260 °C, 10 or N₂F⁺ or XeF⁺ salts. 11 The oxygenation of NF₃ is much more difficult and has been achieved only by the use of O atoms which were generated by electric glow discharge at low temperatures. 12,13 No evidence could be found in the literature for a purely chemical oxygenation of NF₃ to NF₃O. In a recent paper, ¹⁴ Cacace and coworkers have reported the formation of gaseous NF₂O⁺ ions from the chemical ionization of NF₃/N₂O mixtures in a mass spectrometer. On the basis of their observations, they suggested eq 1, where XF₅ represents a strong Lewis acid, as an alternate route to salts containing the NF₂O⁺ cation. Whereas the

$$NF_3 + XF_5 + O$$
-donor $\rightarrow NF_2O^+ XF_6^- + donor$ (1)

formation of free gaseous NF₂⁺ cations in a mass spectrometer is facile, their formation in bulk on a preparative scale presents a major problem. Thus, previous studies from other¹⁵ and our¹⁶ laboratories had shown that, even at low temperatures, NF3 does not form stable adducts with the strong Lewis acids SbF₅, AsF₅,

- (1) Plato, V.; Hartford, W. D.; Hedberg, K. J. Chem. Phys. 1970, 53,
- (2) Curtis, E. C.; Pilipovich, D.; Moberly, W. H. J. Chem. Phys. 1967, 46, 2904.
- (3) Kirchhoff, W. H.; Lide, D. R., Jr. J. Chem. Phys. 1969, 51, 467. (4) Abramowitz, S.; Levin, I. R. J. Chem. Phys. 1969, 51, 463. (5) Hirschmann, R. P.; Harnish, D. F.; Holmes, J. R.; MacKenzie, J. S.;
- Fox, W. B. Appl. Spectrosc. 1969, 23, 333.
 (6) Frost, D. C.; Herring, F. G.; Mitchell, K. A. R.; Stenhouse, I. R. J. Am. Chem. Soc. 1971, 93, 1596.
 - (7) Grein, F.; Lawlor, L. J. Theor. Chim. Acta 1983, 63, 161.
- (8) Brumm, M.; Frenking, G.; Breidung, J.; Thiel, W. Chem. Phys. Lett. 1992, 197, 330
- (9) Bartlett, N.; Passmore, J.: Wells, E. J. J. Chem. Soc., Chem. Commun. **1966**, 213.
- (10) Bougon, R.; Chatelet, J.; Desmoulin, J. P.; Plurien, P. C. R. Seances Acad. Sci., Ser. C 1968, 266, 1760.
 (11) Minkwitz, R.; Bernstein, D.; Preut, H.; Sartori, P. Inorg. Chem. 1991,
- (12) Maya, W. U.S. Patent 3,320,147, 1967.
- (13) Fox, W. B.; MacKenzie, J. S. U.S. Patent 3,323,866, 1967. Fox, W. B.; MacKenzie, J. S.; Vanderkooi, N.; Sukornick, B.; Wamser, C. A.; Holmes, J. R.; Eibeck, R. E.; Stewart, B. B. J. Am. Chem. Soc. 1966, 88,
 - (14) Cacace, F.; Pepi, F.; Grandinetti, F. J. Phys. Chem. 1994, 98, 8009.
- (15) Craig, A. D. Inorg. Chem. 1964, 3, 1628. (16) Christe, K. O.; Wilson, R. D.; Goldberg, I. B. Inorg. Chem. 1979, 18, 2572.

or BF₃. In spite of these dire prospects, the possibility of chemically oxygenating NF3 was explored.

Attempts were unsuccessful to prepare the known^{17,18} NF₂O⁺AsF₆⁻ salt from NF₃, N₂O, and AsF₅ in a Monel cylinder at autogeneous pressures of about 80 atm at temperatures ranging from 100 to 190 °C using a 7-fold excess of NF₃ and N₂O and reaction times of about 3 days. Only unreacted starting materials were recovered from these experiments. When AsF₅ was replaced by SbF₅, no reaction was observed at 100 °C. When, however, the reaction temperature was raised to 150 °C, a quantitative formation of NF₂O⁺Sb₂F₁₁^{-17,19} was obtained with the excess NF₃ and N₂O being recovered unchanged. Raising the reaction tempreature to 190 °C resulted in the formation of a mixture of NF2O+SbF6- and NF2O+Sb2F11which contained small amounts of NO^{+ 20} and NF₄^{+ 21-24} salts as byproducts. When the reaction was carried out at 260 °C, NO+SbF₆⁻ and NF₄+SbF₆⁻ became the main products, and the excess NF₃ and N₂O were again recovered unchanged.

The observed products can be readily explained by the scheme depicted in eq 2. The tendency of NF₃O and SbF₅ to form a salt containing the Sb₂F₁₁⁻ polyanion at 150 °C is in accord with a previous report.¹⁷ With increasing temperature, the formation of NF₂O⁺SbF₆⁻ is favored, followed by its dissociation to NF₃O and SbF₅. This is analogous to our previous observations for NF₄+Sb₂F₁₁-.²⁵ At temperatures above 250

°C, NF₃O is well-known¹⁰ to form an equilibrium with FNO and F₂ which, in the presence of SbF₅, is continuously shifted to the FNO and F_2 side by the formation of the stable NOSb F_6 ²⁶ and NF₄SbF₆²⁵ salts.

The mechanism of the first step of eq 2 is not as clear-cut. On the basis of the ion-molecule experiment of Cacace¹⁴ and the requirement for SbF₅ in this reaction, it would seem logical to postulate NF₂+SbF₆⁻ as an intermediate in the formation of NF₂O⁺. Since previous studies^{15,16} had shown no evidence for NF₃ forming an adduct with either BF₃, AsF₅, or SbF₅, further

(17) Christe, K. O.; Maya, W. Inorg. Chem. 1969, 8, 1253. (18) Wamser, C. A.; Fox, W. B.; Sukornik, B.; Holmes, J. R.; Stewart, B. B.; Juurik, R.; Vanderkooi, N.; Gould, D. Inorg. Chem. 1969, 8, 1249. (19) The NF₂O⁺Sb₂F₁₁⁻ salt was identified by its infrared and Raman

spectra (ref 17). Single crystals were grown from anhydrous HF solution. Attempts by Prof. R. Bau to solve the crystal structure were unsuccessful due to the poor quality of the crystals.

(20) Geichman, J. R.; Smith, E. A.; Trond, S. S.; Ogle, P. R. Inorg.

Chem. 1962, I, 661.
(21) Christe, K. O.; Guertin, J. P.; Pavlath, A. E. Inorg. Nucl. Chem. Lett. 1966, 2, 83. (22) Guertin, J. P.; Christe, K. O.; Pavlath, A. E. Inorg. Chem. 1966, 5,

(23) Christe, K. O.; Guertin, J. P.; Pavlath, A. E.; Sawodny, W. Inorg. Chem. 1967, 6, 533

(24) Tolberg, W. E.; Rewick, R. T.; Stringham, R. S.; Hill, M. E. Inorg. Chem. 1967, 6, 1156.

(25) Christe, K. O.; Wilson, R. D.; Schack, C. J. Inorg. Chem. 1977, 16, 937

(26) Griffith, J. E.; Sunder, W. A.; Falconer, W. E. Spectrochim. Acta, Part A 1975, 31A, 1207.

experiments were carried out on the SbF₅-NF₃, SbF₅-N₂O, and SbF₅-NF₃-N₂O systems. Liquid SbF₅ was pressurized with 2 atm of either NF₃, N₂O₄, or an equimolar mixture of NF₃ and N2O, and its Raman spectra were recorded. The spectra of the liquid phase showed no detectable frequency shifts for the SbF₅ bands. In addition, weak signals were observed for NF₃ and N₂O dissolved in the liquid SbF₅. The frequencies of these dissolved species were identical to those reported²⁷ for the free molecules in the gas phase; hence, liquid SbF₅ does not interact with either NF₃ or N₂O at room temperature.

Since NF₃ and N₂O do not react with each other in the absence of SbF₅ at temperatures as high as 260 °C, as shown by the recovery of the unreacted excess NF3 and N2O in our reactions, one might argue that at 150 °C NF3 and N2O are in equilibrium with NF₃O and N₂ and that this equilibrium (3), which in the absence of SbF₅ must lie far to the left, is continuously shifted to the right by trapping of the NF₃O as solid NF2O+SbF6-.

$$NF_3 + N_2O \rightleftharpoons NF_3O + N_2 \xrightarrow{+SbF_5} NF_2O^+SbF_6^-$$
 (3)

Thermodynamically, eq 3 is feasible because the $NF_3 + N_2O$ reaction is calculated²⁸ to be exothermic by about 27 kcal mol⁻¹, and the lattice energy of solid NF₂O⁺SbF₆⁻ should provide an additional driving force. If these assumptions were correct and equilibrium 3 does indeed exist and at 150-250 °C is shifted far to the left, NF₃O should react with N₂ at these temperatures to produce NF₃ and N₂O in high yield. This, however, is not the case, and a more plausible mechanism is required for explaining the role of SbF₅ in the first step of eq 2.

A more appealing, although unprecedented, explanation is that at room temperature SbF₅ does not interact with NF₃ but at 150 °C it does. This might be possible because at room temperature liquid SbF₅ is highly polymeric and self-associated through fluorine bridges, while above its boiling point (141 °C) in the gas phase it is largely depolymerized. Thus, SbF₅ might be able to interact in the gas phase with NF3 and polarize it sufficiently to allow its attack by N₂O with the resulting ternary intermediate then undergoing an exothermic intramolecular N₂ elimination reaction with simultaneous formation of solid $NF_2O^+SbF_6^-$ eq 4.

The concept of a Lewis acid-Lewis base pair interacting in the gas phase but not in the condensed liquid phase is highly unusual and will be the subject of a forthcoming ¹⁸F radio tracer

In order to provide a convenient synthesis for free NF₃O, it was necessary to convert the NF₂O⁺Sb₂F₁₁⁻ salt in an efficient manner to pure NF₃O. This was achieved by vacuum pyrolysis of NF₂O⁺Sb₂F₁₁⁻ at 190-230 °C in the presence of excess NaF eq 5. This process affords pure NF₃O in high yield.

$$NF_2O^+Sb_2F_{11}^- + 2NaF \rightarrow 2Na^+SbF_6^- + NF_3O$$
 (5)

In summary, it has been demonstrated that N₂O, in spite of its high kinetic stability and concomitant unreactivity, 29 can act as a powerful, oxidative oxygenating agent. Using N2O as the oxygenating agent, the first purely chemical oxygenation of NF, to NF₃O has been achieved. This reaction affords a new, simple, high-yield synthesis of NF₃O from commercially available starting materials.

Acknowledgment. The author thanks Prof. R. Bau for his numerous attempts to obtain the crystal structure of NF₂O⁺Sb₂F₁₁⁻ and Dr. W. W. Wilson for helpful discussions. This work was financially supported by the U.S. Air Force Phillips Laboratory and the U.S. Army Research Office.

JA9505614

⁽²⁷⁾ Shimanouchi, T. Natl. Stand. Ref. Data Ser. (U.S., Natl. Bur. Stand.)

<sup>1972, 39, 1.
(28)</sup> Chase, M. W., Jr.; Davies, C. A.; Downey, J. R., Jr.; Frurip, D. J.; McDonald, R. A.; Syverud, A. N. JANAF Thermochem. Tables, Third Edition, J. Phys. Chem. Ref. Data 1985, 14, Suppl. 1.

⁽²⁹⁾ Greenwood, N. N.; Earnshaw, A. Chemistry of the Elements; Pergamon Press: Oxford, U.K., 1986.